skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kneubehl, Alexander R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work is a comparative genomics investigation of the aromatic and xenobiotic compound degradation capabilities and heavy metal resistance of environmental bacterial isolates previously identified by our lab, Achromobacter xylosoxidans ADAF13, Exiguobacterium sp. KKBO11, Ochrobactrum anthropi FRAF13, Pseudomonas putida CBF10-2, Pseudomonas stutzeri ODKF13, Rhizobium radiobacter GHKF11, and Stenotrophomonas maltophilia CBF10-1. This work sought to assess the potential of these isolates as bioremediation tools. We found a variety of aromatic degradation pathways though none directly acts on industrial compounds such as polycyclic aromatic compounds, benzene, phthalate, or xylene. Achromobacter xylosoxidans ADAF13, P. putida CBF10-2, and P. stutzeri ODKF13 showed the most complete pathways for aromatic compound degradation and halobenzoate degradation. All isolates contained heavy metal resistance genes for arsenic, cadmium, copper, chromium, lead, mercury, and zinc. Arsenic resistance genes were the most common among isolates and were organized into structurally diverse ars operons. Collectively, our data indicated that A. xylosoxidans ADAF13, P. putida CBF10-2, and P. stutzeri ODKF13 are strong candidates for further enhancement and development as bioremediation tools. 
    more » « less